Schattenblick → INFOPOOL → MEDIZIN → FAKTEN


FORSCHUNG/3795: Ionenkanäle und deren Bedeutung für den Organismus (idw)


Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) - 19.02.2018

Eine Frage der Dynamik


Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet werden, geschieht dies in Form elektrischer Signale. Um solche Signale senden zu können, muss die Zelle elektrisch geladene Atome, also Ionen, in sich hinein- oder aus sich herausströmen lassen. Da die Zellmembran selbst für Ionen undurchlässig ist, sitzen dort winzige Eiweißmoleküle, die Ionenkanäle, die für einen geregelten Transport der geladenen Teilchen zuständig sind.

Häufig lassen die Ionenkanäle nur eine Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Dafür verantwortlich ist die engste Stelle im Kanal, der sogenannte Selektivitätsfilter. Nicht so der NaK-Kanal, den die FMP-Wissenschaftler um Han Sun und Adam Lange gemeinsam mit weiteren Forschern aus Göttingen und Hefei in China untersucht haben: Dieser Kanal ist sowohl für Natrium- als auch für Kaliumionen durchlässig.

Nicht-selektive Ionenkanäle sind auch medizinisch von Bedeutung

Warum der NaK-Kanal beide Ionensorten passieren lässt, war bislang umstritten. "Aus röntgenkristallografischen Untersuchungen kannten wir zwar den dreidimensionalen Aufbau des Kanals", sagt Lange. "Anhand dieser Struktur konnte man aber nur schwer erklären, warum er zwei verschiedene Ionensorten mit ähnlich hoher Effizienz passieren lässt, obwohl er eine sehr ähnliche Proteinsequenz und dreidimensionale Struktur des Selektivitätsfilters aufweist wie ein selektiver Kaliumkanal."

Interessant sei die Funktion des NaK-Kanals vor allem auch deshalb, da er als Modell für andere nicht-selektive Ionenkanäle diene, die im menschlichen Körper vorkämen, erläutert Han Sun. Physiologisch und medizinisch relevant seien beispielsweise die sogenannten CNG- und HCN-Kanäle: "Von den CNG-Kanälen wissen wir, dass sie fürs Sehen und Riechen wichtig sind, und eine Fehlfunktion der HCN-Kanäle kann verschiedene neurologische Erkrankungen, etwa Epilepsie oder Autismus, hervorrufen", erklärt die Wissenschaftlerin.

Jede Ionensorte bevorzugt eine eigene Struktur des Kanals

Durch die Kombination von Kernspinresonanz(NMR)-spektroskopischen Untersuchungen und computergestützten Molekulardynamiksimulationen kamen die Forscher um Lange und Sun der Funktionsweise des nicht-selektiven NaK-Kanals auf die Spur. Sie stellten fest, dass der Selektivitätsfilter des Kanals dynamisch zwei verschiedene Strukturen annehmen kann, die von jeweils einer Ionensorte bevorzugt werden. "Außerdem zeigten die Computersimulationen überaschenderweise, dass der Durchtrittsmechanismus von Kaliumionen im NaK-Kanal dem der Kaliumionen in einem Kaliumkanal entspricht, während der Mechanismus für Natrium dem eines Natriumkanals ähnelt", berichtet Sun. Bisher ging man davon aus, dass sich die Struktur des Filters beim Transport von Natrium- und Kaliumionen nicht unterscheidet.

Dass die dynamische Struktur ein wesentliches Merkmal nicht-selektiver Ionenkanäle ist, zeigten auch Experimente mit einem mutierten NaK-Kanal namens NaK2K, der ausschließlich Kaliumionen passieren lässt. "Unsere NMR-Untersuchungen zeigten, dass der Selektivitätsfilter dieses Kanals unter identischen Versuchsbedingungen nur eine einzige Struktur einnimmt", sagt Lange.

Finanziell unterstützt wurde die Arbeit der FMP-Wissenschaftler unter anderem von der Deutschen Forschungsgemeinschaft (DFG) im Rahmen der Forschergruppe 2518 "Funktionale Dynamik von Ionenkanälen und Transportern". Der Norddeutsche Verbund für Hoch- und Höchstleistungsrechnen (HLRN) in Berlin stellte seine Supercomputer zur Verfügung, ohne die die Molekulardynamiksimulationen nicht möglich gewesen wären.


Publikation:
Chaowei Shi, Yao He, Kitty Hendriks, Bert L. de Groot, Xiaoying Cai, Changlin Tian, Adam Lange, Han Sun.
A single NaK channel conformation is not enough for non-selective ion conduction,
Nature Communications 19. Februar 2018, DOI 10.1038/s41467-018-03179-y


Das Leibniz-Institut für Molekulare Pharmakologie (FMP) gehört zum Forschungsverbund Berlin e.V. (FVB), einem Zusammenschluss von acht natur-, lebens- und umweltwissenschaftlichen Instituten in Berlin. In ihnen arbeiten mehr als 1.900 Mitarbeiter. Die vielfach ausgezeichneten Einrichtungen sind Mitglieder der Leibniz-Gemeinschaft. Entstanden ist der Forschungsverbund 1992 in einer einzigartigen historischen Situation aus der ehemaligen Akademie der Wissenschaften der DDR.

Weitere Informationen finden Sie unter
http://www.leibniz-fmp.de/de/press-media/filmportraits-2017/filmportraits-2017-adam-lange.html
http://www.leibniz-fmp.de/lange
http://www.leibniz-fmp.de/sun

Kontaktdaten zum Absender der Pressemitteilung stehen unter:
http://idw-online.de/de/institution1624

*

Quelle:
Informationsdienst Wissenschaft - idw - Pressemitteilung
Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)
Silke Oßwald, 19.02.2018
WWW: http://idw-online.de
E-Mail: service@idw-online.de


veröffentlicht im Schattenblick zum 22. Februar 2018

Zur Tagesausgabe / Zum Seitenanfang