Schattenblick →INFOPOOL →MEDIZIN → FAKTEN

MELDUNG/094: Nachrichten aus Forschung und Lehre vom 07.04.10 (idw)


Informationsdienst Wissenschaft - idw - Pressemitteilungen


→  Der Wächter des Immunsystems gegen Krebs
→  Hamburger Tropeninstitut koordiniert Europäisches Konsortium zur Erforschung des Buruli-Ulkus
→  Jenaer Physiologe gewinnt Nachwuchspreis
→  Neue Strategien gegen Malaria
→  Sauerstoffradikale im Immunsystem

Raute

Helmholtz-Zentrum für Infektionsforschung - 06.04.2010

Der Wächter des Immunsystems gegen Krebs

Unser Körper hat verschiedene Mechanismen entwickelt, durch die er sich gegen neu entstandene Krebszellen schützt. Zum Beispiel erkennen und vernichten Killerzellen jeden Tag veränderte Zellen in unseren Organen. Sind Tumore erst entstanden, stören Botenstoffe des Immunsystems diese beim Wachsen. Wissenschaftler des HZI in Braunschweig konnten jetzt eine völlig unerwartete Funktion eines immunologischen Botenstoffes bei der Tumorbekämpfung zeigen: Das Molekül Beta-Interferon hindert den Tumor daran, sich an das Blutsystem anzuschließen. Dazu hemmt es die Produktion von Wachstumsfaktoren, die die Bildung neuer Adern unterstützen. Die Folge: Der Tumor kann nicht wachsen.

Ihre Ergebnisse hat die Arbeitsgruppe jetzt in der aktuellen Ausgabe des Wissenschaftsmagazins "Journal of Clinical Investigation" veröffentlicht.

Der Anschluss an das Blutsystem ist ein entscheidender Schritt bei der Krebsentstehung. Der Tumor entwickelt innerhalb des Gewebes, in dem er wächst, ein Eigenleben: Er lockt mit Signalstoffen weiße Blutkörperchen aus dem Knochenmark in das Tumorgewebe, deren Aufgabe normalerweise die Infektionsabwehr und Wundheilung ist. Die Zellen regen im Tumor neue Blutgefäße zum Wachsen an. Ist der Tumor an den Blutkreislauf angeschlossen, holt er sich die Nährstoffe, die er zum Wachsen benötigt und kann zudem seine Zellen in das gesamte Blutsystem streuen und Metastasen bilden. Wissenschaftler des HZI entschlüsselten jetzt, wie ein Botenstoff den Anschluss an das Blutsystem verhindert. Botenstoffe sind die Feinregulatoren von Immunzellen: Sie aktivieren oder deaktivieren Zellen, lösen die Produktion von Wachstumsfaktoren oder weiterer Botenstoffe aus, starten oder beenden eine Immunreaktion. Eines dieser Signalmoleküle wird bereits in der Therapie einiger Krebsformen genutzt: Beta-Interferon. Wie es wirkt, wissen die Wissenschaftler bisher nicht. Die Forscherin Jadwiga Jablonska vom HZI ist jetzt eine neue Wirkweise von Beta-Interferon gegen Krebs gefunden. Die Ergebnisse überraschten sie: "Beta-Interferon blockiert den Anschluss des Tumors an das Blutgefäßsystem, indem es Immunzellen daran hindert, Wachstumsfaktoren zu bilden. Diese Wirkung auf Tumore haben wir absolut nicht erwartet", sagt Jadwiga Jablonska.

Die Forscherin ließ Hauttumore in zwei Gruppen von Mäusen wachsen: Die einen Tiere konnten kein Beta-Interferon bilden, die anderen produzieren den Botenstoff normal in ihrem Körper. Nach einigen Tagen untersuchte die Wissenschaftlerin das Wachstum der Tumore. "In Mäusen, die kein Beta-Interferon bilden konnten, waren die Tumore wesentlich größer als in Tieren, die das Signalmolekül in ihrem Körper hatten." Die Tumoren wuchsen nicht nur langsamer, sie bildeten auch weniger und kleinere Metastasen.

Den Grund für das schlechtere Wachstum fand die Wissenschaftlerin in der fehlenden Durchblutung der Tumore. "In Gegenwart von Beta-Interferon bildeten sich viel weniger Adern im Tumor", sagt Jadwiga Jablonska. Das Beta-Interferon wirkt auf einem kleinen Umweg: Es blockiert die Produktion von Adern bildenden Wachstumsfaktoren in Zellen, die der Tumor anlockt, um den Blutanschluss zu fördern. Die Forscherin entdeckte, dass die Zellen nicht nur weniger Wachstumsfaktoren bildeten, sondern auch dass weniger dieser Zellen ihren Weg in den Tumor fanden. "Bereits eine verschwindend geringe Menge des Botenstoffes reicht aus, um Zellen fernzuhalten, Wachstumsfaktoren zu hemmen und damit das Tumorwachstum zu stoppen", sagt Jadwiga Jablonska.

"Dieser Wirkmechanismus von Beta-Interferon war bisher völlig unbekannt", sagt Siegfried Weiß, Leiter der Arbeitsgruppe "Molekulare Immunologie" am HZI. Der Botenstoff spiele eigentlich eine wichtige Rolle bei Virus-Erkrankungen und Entzündungsreaktionen. "Wir wollen jetzt verstehen, wie das Netzwerk von Tumor, Immunzellen und Botenstoffe funktioniert, um neue Zielstrukturen für die Therapie von Krebs zu entdecken", sagt Weiß.

Originalartikel:
Jablonska J, Leschner S, Westphal K, Lienenklaus S, Weiss S.
Neutrophils responsive to endogenous IFN-beta regulate tumor angiogenesis and growth in a mouse tumor model.
J Clin Invest. 2010 Apr 1.
DOI: 10.1172/JCI37223

Hören Sie zu dem Thema auch unseren Podcast "Der Wächter gegen Krebs:
Botenstoffe des Immunsystems hemmen das Krebswachstum" unter
http://www.helmholtz-hzi.de/de/presse_und_oeffentlichkeit/medienangebot/audio/

Kontaktdaten zum Absender der Pressemitteilung:
http://idw-online.de/pages/de/institution129

Quelle: Helmholtz-Zentrum für Infektionsforschung, Susanne Thiele, 06.04.2010

Raute

Bernhard-Nocht-Institut für Tropenmedizin - 06.04.2010

Hamburger Tropeninstitut koordiniert Europäisches Konsortium zur Erforschung des Buruli-Ulkus

Am Rande der World Health Organization (WHO)-Jahreskonferenz zum Buruli-Ulkus fiel am 22. März 2010 in Genf der offizielle Startschuss für das neue europäische Forschungsprojekt "BuruliVac" unter der Leitung von Prof. Dr. Bernhard Fleischer vom Bernhard-Nocht-Institut für Tropenmedizin in Hamburg.

Ziel dieses Forschungsprojekts ist es, einen Impfstoff gegen Buruli-Ulkus zu entwickeln. Diese Infektionserkrankung kommt insbesondere in tropischen Regionen vor und befällt vorwiegend Kinder.

An dem Projekt, das über drei Jahre mit 4,6 Mio. Euro von der Europäischen Union gefördert wird, sind neben verschiedenen europäischen Tropeninstituten, Universitäten, Forschungsinstituten und Unternehmen auch fünf afrikanische Partner beteiligt. Insgesamt 16 Institute aus 11 verschiedenen Ländern arbeiten zusammen. So kommen im Rahmen von "BuruliVac" die führenden Experten für diese Infektionskrankheit aus Europa und Afrika zusammen.

Über Buruli-Ulkus und "BuruliVac"
Das Buruli-Ulkus, ausgelöst durch das Bakterium Mycobacterium ulcerans, ist eine wenig beachtete Infektionskrankheit, die weltweit auftritt - insbesondere in West- und Zentralafrika, aber auch in Südamerika, Asien und Australien. Im Laufe der Erkrankung bilden sich bei den Patienten große Geschwüre, meist an Armen und Beinen. Eine Behandlung der Krankheit im frühen Stadium mit Antibiotika ist möglich, erweist sich jedoch als langwierig und große operative Eingriffe sind oft unumgänglich. Spätfolgen der Erkrankung sind ausgedehnte Vernarbungen, die zu einer starken Einschränkung der Beweglichkeit führen. Betroffene leiden neben der gesellschaftlichen Stigmatisierung unter dem Ausfall der Erwerbstätigkeit bzw. Kinder unter der Einschränkung des Schulbesuchs, was zu weiteren sozialen und ökonomischen Problemen führt. Aus diesem Grund hat die WHO das Buruli-Ulkus im Jahr 2004 zur Bedrohung für die Weltgesundheit zum Hindernis bei der Erreichung der UN-Welt-Entwicklungsziele erklärt.

Eine Impfung gegen M. ulcerans würde Menschen in Risikogebieten vor der Infektion schützen und könnte als therapeutische Impfung eingesetzt werden, um die Behandlungsdauer zu verkürzen und Rückfälle zu vermeiden. Da derzeit kein geeigneter Impfstoff zur Verfügung steht, zielt das Projekt BuruliVac darauf ab, neue mögliche Impfstoffkandidaten zu identifizieren und zu entwickeln. Im Rahmen des Projektes ist ein umfangreicher Aufbau von Kapazitäten in den afrikanischen Partnerinstitutionen in Form von Training in den Bereichen Diagnostik und Laborforschung sowie durch Ausstattung mit Laborgeräten vorgesehen.

Über das Bernhard-Nocht-Institut für Tropenmedizin
Das Bernhard-Nocht-Institut für Tropenmedizin (BNI) ist Deutschlands größte Einrichtung für Forschung, Versorgung und Lehre auf dem Gebiet tropentypischer Erkrankungen und neu auftretender Infektionskrankheiten.

Gegenstand der Forschung sind Klinik, Epidemiologie und Krankheitsbekämpfung sowie die Biologie der Krankheitserreger, ihrer Reservoirtiere und Überträger. Den aktuellen Schwerpunkt bilden Malaria, hämorrhagische Fieberviren, Tuberkulose und Gewebewürmer. Für den Umgang mit hochpathogenen Erregern wie Lassa- und Ebola-Viren verfügt das Institut über Laboratorien der höchsten biologischen Sicherheitsstufe (BSL4). Als herausragende wissenschaftliche Leistungen des Instituts in jüngster Vergangenheit gelten die Identifizierung des SARS-Coronavirus und die Entdeckung eines bisher unbekannten Entwicklungsstadiums der Malaria-Erreger im Menschen.

Versorgungsleistungen des Instituts umfassen die spezielle Labordiagnostik tropentypischer und anderer seltener Erkrankungen, eine enge Zusammenarbeit mit der Bundeswehr sowie Beratung für Wissenschaft, Wirtschaft, Politik und Öffentlichkeit, die wesentlich zur gesamtstaatlichen Bedeutung des Instituts beitragen. Das Institut dient als nationales Referenzzentrum für den Nachweis aller tropischen Infektionserreger, Referenzlabor für SARS und Kooperationszentrum der Weltgesundheitsorganisation für hämorrhagische Fieberviren.

Die Lehrtätigkeit umfasst einen dreimonatigen, ganztägigen Kursus über alle Aspekte der Tropenmedizin für Ärzte sowie ein Fortbildungsprogramm für Doktoranden des Instituts und eine Reihe von Weiterbildungsangeboten zu Themen der Reisemedizin und der internationalen Gesundheit.

In Zusammenarbeit mit dem ghanaischen Gesundheitsministerium und der Universität von Kumasi betreibt das Institut seit über zehn Jahren ein modernes Forschungs- und Ausbildungszentrum in Ghana, das auch externen Arbeitsgruppen zur Verfügung steht.

Als Mitglied der Wissenschaftsgemeinschaft Gottfried Wilhelm Leibniz (WGL) wird das Institut als Forschungsinstitut mit überregionaler Bedeutung gemeinsam durch den Bund, die Freie und Hansestadt Hamburg und die übrigen Bundesländer finanziert.

Kontaktdaten zum Absender der Pressemitteilung:
http://idw-online.de/pages/de/institution1059

Quelle: Bernhard-Nocht-Institut für Tropenmedizin, Dr. Eleonara Setiadi, 06.04.2010

Raute

Friedrich-Schiller-Universität Jena - 06.04.2010

Jenaer Physiologe gewinnt Nachwuchspreis

Internationale Fachgesellschaft fördert Forschungsprojekt zum Gelenkschmerz bei Blutern

(Jena) Dr. Michael Böttger vom Universitätsklinikum Jena (UKJ) ist einer von sieben Preisträgern des Early Career Research Award der Internationalen Gesellschaft zur Erforschung des Schmerzes (IASP). Die Fachgesellschaft unterstützt ein Forschungsprojekt des Neurophysiologen mit 20.000 US-Dollar. Darin untersucht der Nachwuchswissenschaftler am Institut für Physiologie des UKJ in enger Kooperation mit der Arbeitsgruppe von Prof. Dr. Dr. Thomas Hilberg, Lehrstuhl für Sportmedizin der Bergischen Universität Wuppertal, wie bei Bluterkranken Gelenkschmerzen entstehen und wie diese wirksam behandelt werden können.

Meist ist es ein Unfall, ein Sturz oder eine Überbeanspruchung - was bei Gesunden normalerweise zu keinerlei bleibenden Beschwerden führt, kann bei Patienten mit der Bluterkrankheit oder Hämophilie, einer erblichen Störung der Blutgerinnung, zu Einblutungen in Gelenke führen und somit den Beginn dauernder Gelenkprobleme darstellen. Neben der akuten Druckbelastung kommt es dabei zu einer ausgeprägten Entzündungsreaktion, die dann erneute Einblutungen begünstigen kann. In der Folge führt diese Entzündungsreaktion zu einer Zerstörung von Gelenkstrukturen, verbunden mit starken Schmerzen. "Ein großes Problem dabei ist, dass diese Patienten viele Standardmedikamente zur Behandlung der Schmerzen und der Entzündung nicht einnehmen können, weil diese gleichzeitig gerinnungshemmend wirken", so Dr. Michael Böttger.

Um die zur Verfügung stehenden Wirkstoffe möglichst zielgenau und nebenwirkungsarm einsetzen zu können, möchte der Wissenschaftler, der seit vier Jahren am Institut für Physiologie an Gelenkschmerz-Mechanismen forscht, zwei Ansätze verfolgen. Einerseits wird er gemeinsam mit dem Lehrstuhl für Sportmedizin der Bergischen Universität Wuppertal Hämophilie-Patienten mit Gelenkproblemen untersuchen: "Wir befragen die Probanden nach ihrem Schmerzempfinden, beziehen klinische Parameter ein und werden auch sogenannte Schwellenmessungen durchführen, die eine objektive Beurteilung der Schmerzstärke erlauben."

Parallel dazu will Dr. Böttger im Tiermodell die Mechanismen untersuchen, die aus den Einblutungen eine chronische Entzündung und die damit verbundenen Schmerzen werden lassen - und welche Therapiekonzepte dies verhindern können. "Wir wollen verstehen, wie das eingedrungene Blut das Gelenk schädigt, um so die Therapie gegen die Schmerzen und die Entzündung verbessern zu können", beschreibt er das Ziel des Projektes.

Die Internationale Schmerzgesellschaft vergibt alle zwei Jahre sieben Nachwuchspreise, um jungen Wissenschaftlern ein Jahr lang die unabhängige Bearbeitung eines eigenen Projektes auf dem Gebiet der Schmerzforschung zu ermöglichen.

Kontakt:
Dr. Michael Böttger
Institut für Physiologie I
Universitätsklinikum Jena
07740 Jena
E-Mail: Michael.Boettger[at]mti.uni-jena.de

Kontaktdaten zum Absender der Pressemitteilung:
http://idw-online.de/pages/de/institution23

Quelle: Friedrich-Schiller-Universität Jena, Uta von der Gönna, 06.04.2010

Raute

Julius-Maximilians-Universität Würzburg - 06.04.2010

Neue Strategien gegen Malaria

Gabriele Pradel hat für ihre Forschung an den Sexualstadien des Malariaerregers die Rudolphi-Medaille der Deutschen Gesellschaft für Parasitologie erhalten. Ihre Arbeiten über die Übertragung des Erregers vom Menschen auf die Mücke könnten als Grundlage für die Entwicklung neuartiger Anti-Malaria-Strategien dienen.

Bevor der Malariaerreger Plasmodium falciparum einen Menschen befallen und in Lebensgefahr bringen kann, hat er in der Regel einen komplizierten Weg zurückgelegt: Eine Anopheles-Mücke sticht einen infizierten Menschen und nimmt mit dessen Blut auch ein paar der Erregerzellen auf. Im Darm der Mücke reifen die Plasmodien zu Geschlechtszellen heran, die im Prinzip mit den Ei- und Samenzellen des Menschen vergleichbar sind. Sie verschmelzen miteinander, verlassen den Darm und der Parasit wandert anschließend in die Speicheldrüsen der Mücke. Sticht diese erneut einen Menschen, infiziert sie ihn und der Kreislauf hat sich geschlossen.

Forschung an den Sexualstadien des Malariaerregers

Die Sexualstadien des Malariaerregers erforscht Gabriele Pradel schon seit vielen Jahren. Seit Januar 2005 leitet sie am Zentrum für Infektionsforschung der Universität Würzburg eine Nachwuchsgruppe, die sich speziell mit diesen Stadien beschäftigt. Zuvor hatte sie sechs Jahre lang am Department of Medical Parasitology der New York University und am Cornell Medical Center über Malariaparasiten gearbeitet.

Noch vor zehn Jahren war über die Sexualphasen des Malariaerregers und somit über die Übertragung des Parasiten vom Menschen auf die Mücke wenig bekannt. Das hat sich mit den Arbeiten von Gabriele Pradel mittlerweile geändert. Vor allem zu den Befruchtungsvorgängen des Erregers hat die Biologin in den vergangenen Jahren entscheidende Erkenntnisse geliefert.

Eine klebrige Hülle als Angriffspunkt

So konnten Gabriele Pradel und ihr Team erst vor Kurzem nachweisen, dass der Erreger kurz vor der Entstehung seiner Geschlechtszellen sechs spezielle Proteine produziert, die sich untereinander zu größeren Komplexen zusammenlagern. Diese Proteinhaufen finden sich später ausschließlich auf der Oberfläche seiner "Eizellen" wieder und bilden dort eine klebrige Hülle. "Möglicherweise dient die klebrige Hülle dazu, die 'Samenzellen' festzuhalten. Denkbar ist aber auch, dass die 'Eizelle' sich damit gegen aggressive Substanzen schützt, die im Darm der Mücken vorkommen", mutmaßt Gabriele Pradel.

Eventuell ist die klebrige Hülle ein wunder Punkt des Parasiten. Denn falls sie für seine Fortpflanzung absolut notwendig ist, eignet sie sich als Angriffsziel für bestimmte Impfstoffe. Solche neuen Angriffspunkte werden von Wissenschaftlern weltweit gesucht. Denn noch immer sterben jedes Jahr mehr als eine Million Menschen an dieser Tropenkrankheit. Malaria zählt damit zu den gefährlichsten Infektionskrankheiten weltweit. Eine wirksame Bekämpfung der Krankheit wird momentan durch die zunehmenden Resistenzen des Erregers gegen gebräuchliche Medikamente verhindert, und Impfstoffe zum Schutz gegen Malaria stehen bis heute nicht zur Verfügung.

Für ihre Forschung an den Sexualstadien des Malariaerregers hat die Deutsche Gesellschaft für Parasitologie während ihrer Jahrestagung in Düsseldorf am 17. März 2010 Gabriele Pradel die Karl Asmund Rudolphi-Medaille verliehen. Die Gesellschaft würdigt damit herausragende wissenschaftliche Leistungen auf dem Gebiet der Parasitologie.

Kontakt:
PD Dr. Gabriele Pradel
E-Mail: gabriele.pradel@uni-wuerzburg.de

Kontaktdaten zum Absender der Pressemitteilung:
http://idw-online.de/pages/de/institution99

Quelle: Julius-Maximilians-Universität Würzburg, Robert Emmerich, 06.04.2010

Raute

Universität des Saarlandes - 06.04.2010

Sauerstoffradikale im Immunsystem

Sauerstoffradikale (Oxidative Substanzen) werden allgemein mit zerstörerischen Funktionen im menschlichen Körper in Verbindung gebracht. Dass sie aber auch überaus nützlich sein können, hat jetzt eine Arbeitsgruppe um Dr. Ivan Bogeski, Dr. Barbara Niemeyer und Professor Markus Hoth an der Medizinischen Fakultät der Saar-Universität gezeigt. Die Wissenschaftler am Institut für Biophysik haben eine völlig neue Funktion von Sauerstoffradikalen im Immunsystem aufgeklärt. Ihre Ergebnisse wurden jüngst (30. März 2010) in "Science Signaling" publiziert.

Zu den zerstörerischen Funktionen von Sauerstoffradikalen zählen beispielsweise mögliche Schädigungen des Erbmaterials nach einer Strahlentherapie, und auch bei der Alterung des menschlichen Körpers spielen diese Substanzen wahrscheinlich eine wichtige Rolle. Allerdings haben Sauerstoffradikale im Immunsystem durchaus auch positive Funktionen: In entzündetem Gewebe werden sie unter anderem von Fresszellen (Makrophagen) des Immunsystems verstärkt freigesetzt, um eingedrungene Bakterien zu abzutöten.

Damit Entzündungen effektiv bekämpft werden, müssen aber noch weitere Immunzellen zum Ort des Geschehens wandern. Hierzu gehören unter anderem die T-Zellen, die eine zentrale Rolle bei der Regulation des Immunsystems und der Abtötung "kranker" Zellen spielen. Ihre Aktivität wird durch Calcium-Ionen gesteuert, die durch Calciumkanäle in die Zelle einströmen. Das Team um Dr. Ivan Bogeski und Dr. Barbara Niemeyer konnte zeigen, dass der Haupt-Calciumkanal (ORAI1) der T-Zellen durch Sauerstoffradikale blockiert wird. Damit wären diese wichtigen Immunzellen nicht mehr funktionsfähig. Den Homburger Forschern gelang aber der Nachweis, dass T-Zellen unter diesen Bedingungen nah verwandte Calciumkanäle (ORAI3) bilden, durch die weiter Calcium ins Innere der T-Zellen einströmen kann, wodurch diese ihre Funktion weiter ausüben können. Somit ist zum ersten Mal gezeigt worden, dass ORAI1 und ORAI3 unterschiedliche Funktionen im Immunsystem haben. Die Biophysiker folgern daraus, dass dieser Mechanismus eine wichtige Rolle bei der Regulation der Immunantwort spielt.

Als nächstes soll die Regulation der Immunzellen durch Sauerstoffradikale von gesunden Probanden und von Patienten mit Autoimmunerkrankungen näher untersucht werden. Hauptaugenmerk wird auch dabei auf der unterschiedlichen Funktion von ORAI1 und ORAI3 und ihrer Regulation durch Sauerstoffradikale liegen. Obwohl bislang noch keine selektiven Pharmaka für ORAI1 und ORAI3 existieren, bieten die unterschiedlichen Funktionen der beiden Kanäle sehr gute Angriffspunkte, um gezielt bestimmte Immunzellreaktionen bei Autoimmunerkrankungen zu unterbinden.

Weitere Informationen:
Dr. Ivan Bogeski
E-Mail: ivan.bogeski@uks.eu

Barbara A. Niemeyer, Ph.D.
E-Mail: barbara.niemeyer@uks.eu

Prof. Dr. Markus Hoth
E-Mail: markus.hoth@uks.eu

Kontaktdaten zum Absender der Pressemitteilung:
http://idw-online.de/pages/de/institution8

Quelle: Universität des Saarlandes, Gerhild Sieber, 06.04.2010

Raute

Quelle:
Informationsdienst Wissenschaft - idw - Pressemitteilung
WWW: http://idw-online.de
E-Mail: service@idw-online.de


veröffentlicht im Schattenblick zum 8. April 2010