Schattenblick →INFOPOOL →NATURWISSENSCHAFTEN → GEOWISSENSCHAFTEN

MELDUNG/026: Kräfte im Untergrund - Deformationsvorgänge in Kiesablagerungen (PR&D)


PR&D - Public Relations für Forschung & Bildung - 21. Juni 2010

Kräfte im Untergrund: Deformationsvorgänge in Kiesablagerungen


Verbiegungen in den Ablagerungsschichten des Eisenstadt-Sopron-Beckens werden durch unregelmäßig verteilte Verformung im umgebenden Sediment bewirkt. Die Ursache sind Gradienten in der Verformungsintensität, die sowohl parallel als auch rechtwinklig zu einer Bruchzone auftreten. Diese Ergebnisse eines vom Wissenschaftsfonds FWF unterstützen Projektes erlauben sowohl ein besseres Verständnis über grundlegende geologische Vorgänge als auch über die Bildung und Struktur von Lagerstätten für Öl und Wasser.

Tektonische Kräfte können schon was bewegen. Der Himalaja oder der pazifische Tiefseegraben belegen das eindrucksvoll. Doch selbst diese wachsen im Jahr nur wenige Millimeter bis Zentimeter. Genau in dieser Dimension bewegen sich auch andere Zeugen geologischer Kräfte - die sogenannten Deformationsbänder. Sie treten in weichen, porösen Gesteinsschichten, wie Sandstein, auf. Entstehen tun sie dort, wo grobkörnige Gesteine von Scherkräften der darüber- und darunterliegenden Gesteinshorizonte bewegt werden oder eine Volumenveränderung erfahren. Im Gegensatz zu einer sogenannten Verwerfung, bei der die Gesteinsschicht bricht, werden in den Deformationsbändern aber nur Gesteinskörner zermahlen oder neu organisiert. Dabei ändert sich jedoch die Porosität des Gesteins und damit seine Permeabilität für Flüssigkeiten. So tragen Deformationsbänder zur Bildung und Struktur von Öl- oder Wasservorkommen bei. Ihre Bildung und Wirkung auf das umgebende Gestein besser zu verstehen, ist das Ziel eines Projektes am Department für Geodynamik und Sedimentologie der Universität Wien.

DAS KORN MACHTS!
Die Projektleiterin Dr. Ulrike Exner und ihr Team konnten dabei zeigen, dass Deformationsbänder im Eisenstadt-Sopron-Becken nahe des Neusiedlersees aufgrund der relativ groben Körnung einen Gradienten in der Intensität ihrer Verformungen aufzeigen. Dieser Gradient verläuft vom undeformierten Nebengestein hin zum Zentrum des Deformationsbands. Dazu Dr. Exner: "Die hier verantwortlichen Zugspannungen wirken im rechten Winkel auf das Gestein des Deformationsbands. Doch wir haben auch festgestellt, dass es einen Verformungsgradienten parallel zur Orientierung der Bruchzone gibt. Bei diesem ist der größte Versatz in der Mitte des Deformationsbands zu erkennen. Nach oben und unten hin nimmt dieser dann ab." Die Konsequenz dieser beiden unterschiedlich ausgerichteten Verformungsgradienten ist eine Verfaltung der umgebenden Sedimentschichten.

DIE WIDERSINNIGE SCHLEPPUNG
Die weitere Wirkung dieser inhomogenen Deformationen im Gestein erklärt Dr. Exner so: "Die umgebenden Gesteinshorizonte beginnen sich zu verbiegen. Ein Effekt, der als Reverse Drag oder widersinnige Schleppung bezeichnet wird. Bei eng nebeneinanderliegenden Deformationsbändern können sich solche Schleppungen - oder Verdrehungen - sogar überlagern. Dann gibt es zunehmend wildere Muster." Doch selbst für diese Muster gibt es Erklärungsmodelle, wie Dr. Exner weiter ausführt: "Das sogenannte Domino-Modell erklärt diese Muster mit dem Rotieren von Gesteinsblöcken zwischen den verschiedenen Deformationsbändern. Da das Gestein noch weich ist und die Verformung sehr langsam vor sich geht, verhalten sich diese Blöcke zähflüssig und lassen sich leicht verformen."

Auffällig ist bei den untersuchten Deformationsbändern das Verhältnis zwischen dem Versatz der sich gegeneinander verschiebenden Gesteinsschichten und der Länge der Deformationsbänder. Mit 1:100 bis zu 1:10 sind diese Verhältnisse ungewöhnlich groß. Eine Tatsache, die laut Dr. Exner die Entstehung von Reverse Drag begünstigen könnte.

Obwohl sich die Vorgänge, die Dr. Exner untersucht, in geologischen Tiefen abspielen, ist die praktische Bedeutung ihrer Arbeit unmittelbar erlebbar: Deformationsbänder bilden sich vor allem in porösem Gestein, der aufgrund der vielen Poren auch als Lagerstätte für Öl oder Wasser dient. Deformationsbänder ändern die Porosität und können so die Förderung von Öl oder Wasser beeinflussen. Und selbst in himmlischen Höhen hat dieses FWF-Projekt Bedeutung: Der Kalksandstein, auch als Leithakalk bekannt, des Wiener Stephansdoms stammt aus dem Eisenstadt-Sopron-Becken. Auch seine Porosität - und damit sein Verhalten gegenüber Umwelteinflüssen und Schutzmaßnahmen - wird von Deformationsbändern beeinflusst.

Daten präsentiert auf dem "European Geosciences Union General Assembly 2010" am 2.-7. Mai in Wien


*


Quelle:
Pressemitteilung vom 21. Juni 2010
PR&D - Public Relations für Forschung & Bildung
Campus Vienna Biocenter 2, 1030 Wien - Österreich
Telefon: +43/ 1 / 505 70 44, Fax: +43 1 505 50 83
E-Mail: contact@prd.at
Internet: http://www.prd.at


veröffentlicht im Schattenblick zum 25. Juni 2010