Schattenblick →INFOPOOL →NATURWISSENSCHAFTEN → PHYSIK

ASTRO/256: Aktuell in "Science" - Erstmals Staub aus dem Interstellaren Raum analysiert (idw)


Goethe-Universität Frankfurt am Main - 14.08.2014

Aktuell in "Science": Erstmals Staub aus dem Interstellaren Raum analysiert



BERKLEY/FRANKFURT/HEIDELBERG/MAINZ. Der Interstellare Raum ist in der Vorstellung der meisten Menschen völlig leer. Tatsächlich enthält er aber einige Prozent der gesamten verfügbaren Masse der Galaxie. Wenige Mikrometer große Teilchen sind jetzt erstmalig von einem internationalen Wissenschaftler-Team untersucht worden, dazu ist heute ein Beitrag in der aktuellen Ausgabe von "Science" erschienen.

Diese so genannte interstellare Materie ist zudem extrem wichtig, da aus ihr neue Sterne und Planetensysteme entstehen. Sie enthält die Grundbausteine aller uns bekannten Himmelskörper einschließlich der Erde. Der größte Teil dieser Materie besteht aus den Gasen Wasserstoff und Helium, nur ein Hundertstel davon ist Staub. Dieser enthält alle schweren Elemente, die die Baustoffe für die erdähnlichen Planeten liefern und damit auch als Grundlage für Leben gelten. Von dieser nicht aus unserem eigenen Sonnensystem stammenden Urmaterie wurden nun erstmals Proben von einer Raumsonde zur Erde zurückgebracht und in den am besten hierfür geeigneten Laboratorien der Welt untersucht.

Bekannt wurde die Stardust-Mission durch ihren spektakulären Flug durch den Schweif des Kometen Wild 2. An der Untersuchung der Proben hatten einige der deutschen Wissenschaftler bereits mitgewirkt. Die Raumsonde sammelte aber auch monatelang Staubpartikel aus dem Interstellaren Raum mit einer etwa einen halben Quadratmeter großen Auffangvorrichtung. Die winzigen, unvorstellbar schnell fliegenden Körner, die sich wahrscheinlich um sterbende Sterne und während Supernovae gebildet haben, wurden dabei in einem transparenten Glasschaum eingefangen. Nach der erfolgreichen Rückkehr der Proben begann die umfangreiche und aufwendige Suche nach den Mikropartikeln.

"Der Aufwand, diese Partikel im Glasschaum zu entdecken war so groß, dass man die ganze Welt um Mithilfe bat", sagt Prof. Frank Brenker von der Frankfurter Goethe-Universität. Insgesamt beteiligten sich über 34.000 Laien an der Suche und investierten hierfür große Teile ihrer Freizeit. Die große Anzahl freiwilliger Helfer zeigt, dass die Untersuchungen auf großes gesellschaftliches Interesse stoßen. "Es ist das erste Mal überhaupt, dass Material untersucht wird, welches nicht aus unserem eigenen Sonnensystem stammt. Es ist quasi unser Kontakt mit anderen Bereichen unserer Galaxie", erklärt Brenker. "Hier gibt es offensichtlich ein großes Bedürfnis nach wissenschaftlichen Antworten."

Vielversprechende Einschlagspuren des Auffangbehälters der Stardust-Raumsonde, an deren Ende sich die winzigen Teilchen befanden, wurden von der Arbeitsgruppe von Prof. Frank Brenker mittels hochempfindlicher nano-Synchrotron-Röntgenfluoreszenz am ESRF in Grenoble untersucht. Die Messungen führten schließlich zur Identifizierung der ersten Kandidaten für Körner mit interstellarem Ursprung.

Weitere Einschlagsspuren wurden am Max-Planck-Institut für Chemie in Mainz mittels hochauflösender Sekundärionenmassenspektrometrie von der Arbeitsgruppe von Dr. Peter Hoppe studiert. Um vielversprechende Einschlagspuren überhaupt zu identifizieren und von ihnen auf die Einschlagsgeschwindigkeit und andere Eigenschaften der einschlagenden Teilchen (beispielsweise Masse, Porosität, chemische Zusammensetzung) rückschließen zu können, wurden Kollektoren in Heidelberg in Kooperation mit der Universität Stuttgart (Dr. Ralf Srama) mittels eines weltweit einzigartigen Staubbeschleunigers beschossen, um den Einschlagprozess zu simulieren und zu kalibrieren.

Die Ergebnisse des internationalen Konsortiums wurden nun im Wissenschaftsmagazin SCIENCE (Westphal et al. 2014) veröffentlicht. Bislang konnten wenige größere (Mikrometer große) Teilchen untersucht werden. Zwei Teilchen mit den schönen Namen Orion und Hylabrook wurden im Aerogel unzerstört eingefangen, ein weiteres hinterließ nur eine Einschlagspur, vier Teilchen erzeugten Einschläge auf Folien zwischen den Aerogel-Feldern.

Die untersuchten interstellaren Teilchen sind entgegen den gängigen Vorstellungen und Modellen nicht vollständig amorph, haben einen eher niedrigen Kohlenstoffanteil und stellen auch keinen direkten Hochtemperaturkondensate dar. Die Elementzusammensetzung entspricht in Teilen dem kosmischen Durchschnitt, es gibt aber wichtige Abweichungen, etwa Defizite des Elements Kalzium oder Überschüsse des Elements Aluminium. Somit weichen diese Teilchen deutlich von Durchschnittseigenschaften ab, die von astronomischen Beobachtungen und Modellierungen bisher abgeleitet wurden.

Kontaktdaten zum Absender der Pressemitteilung unter:
http://idw-online.de/de/institution131

*

Quelle:
Informationsdienst Wissenschaft e. V. - idw - Pressemitteilung
Goethe-Universität Frankfurt am Main, Ulrike Jaspers, 14.08.2014
WWW: http://idw-online.de
E-Mail: service@idw-online.de


veröffentlicht im Schattenblick zum 19. August 2014