Schattenblick →INFOPOOL →NATURWISSENSCHAFTEN → PHYSIK

MELDUNG/176: Physiker entwickeln Lichtspeicher aus Diamant im Nanometerbereich (idw)


Universität des Saarlandes - 14.11.2011

Saarbrücker Physiker entwickeln Lichtspeicher aus Diamant im Nanometerbereich


Hundertprozentige Sicherheit gibt es auf dem Gebiet der Quanteninformation, der Signalübertragung mit einzelnen Lichtteilchen. Nun haben Wissenschaftler um Professor Christoph Becher einen winzigen Lichtspeicher aus Diamant hergestellt, mit dem sie die Erzeugung der benötigten einzelnen Lichtteilchen deutlich steigern konnten. Die Herstellung der extrem kleinen Lichtspeicher - oder Resonatoren - auf der Nanometerskala erfolgte in einer interdisziplinären Kooperation mit Saarbrücker Materialwissenschaftlern und Physikern der Universitäten Augsburg, Freiburg und Kaiserslautern. Über die Entwicklung des Lichtspeichers berichten die Physiker im renommierten Fachmagazin Nature Nanotechnology.

Der verwendete Diamant wird künstlich hergestellt und hat annähernd ideale Eigenschaften, was Reinheit und Transparenz angeht. Zur Fabrikation dieser Lichtkäfige wurde zuerst eine nur 300 Nanometer dünne Membran präpariert. Um den Diamanten für das ausgesandte Licht hochreflektierend zu machen und so die Erzeugungsrate der Lichtteilchen oder Photonen massiv zu erhöhen, wird eine sogenannte photonische Kristallstruktur verwendet. Dazu haben Janine Riedrich-Möller und Laura Kipfstuhl sowie weitere Mitarbeiter der Arbeitsgruppe Quantenoptik um Professor Christoph Becher in die Diamantmembran Löcher mit etwa 80 Nanometern Durchmesser "gebohrt". Das entspricht etwa einem Tausendstel des Durchmessers eines menschlichen Haares. Durch mehrfache Reflexionen (so genannte Bragg-Reflexionen) an den Lochseitenwänden werden die von Atomen im Diamant ausgesandten Lichtteilchen, also die Informationsträger, wie in einem Käfig in der Mitte der Lochstruktur gespeichert.

Zur Erzeugung der Lichtteilchen selbst verwenden die Wissenschaftler so genannte Farbzentren. Das sind Fremdatome, die fest in das Kristallgitter des Diamanten eingebettet sind. Im Gegensatz zu "echten" Atomen sind diese Farbzentren deutlich einfacher zu handhaben und erfordern weder aufwändige Vakuumanlagen noch komplizierte Kühlmechanismen um Lichtteilchen mit den gewünschten Eigenschaften auszusenden.

Die Realisierung der Nano-Resonatoren gilt als essentiell für die künftige Nutzung von Farbzentren für die Quanteninformationsübertragung sowie für die Integration mehrerer Komponenten, um Lichtteilchen auf einem einzigen Chip zu erzeugen und zu übertragen. Das grundlegende Konzept der Saarbrücker Physiker bildet die Basis für zukünftige Experimente, in denen die Emission der Photonen kontrolliert, ihre Eigenschaften beeinflusst und Lichtteilchen mehrerer entfernter Farbzentren miteinander in Wechselwirkung gebracht werden sollen. Diese Schritte rücken die Vision einer Quanteninformationstechnologie, basierend auf einem Diamant-Chip, in greifbare Nähe.

Janine Riedrich-Möller, Laura Kipfstuhl, Christian Hepp, Elke Neu, Christoph Pauly, Frank Mücklich, Armin Baur, Michael Wandt, Sandra Wolff, Martin Fischer, Stefan Gsell, Matthias Schreck and Christoph Becher:
"One- and two-dimensional photonic crystal microcavities in single crystal diamond?
DOI: 10.1038/NNANO.2011.190

Weitere Informationen unter:
http://dx.doi.org

Kontaktdaten zum Absender der Pressemitteilung unter:
http://idw-online.de/de/institution8


*


Quelle:
Informationsdienst Wissenschaft e. V. - idw - Pressemitteilung
Universität des Saarlandes, Thorsten Mohr, 14.11.2011
WWW: http://idw-online.de
E-Mail: service@idw-online.de


veröffentlicht im Schattenblick zum 16. November 2011