Schattenblick → INFOPOOL → NATURWISSENSCHAFTEN → TECHNIK


ENERGIE/1414: Lithium-Ionen Akkus - Kapazität kann um das Sechsfache gesteigert werden (idw)


Helmholtz-Zentrum Berlin für Materialien und Energie GmbH - 08.08.2016

Lithium-Ionen Akkus: Kapazität kann um das Sechsfache gesteigert werden


Lithium-Ionen-Akkus könnten ihre Kapazität um das Sechsfache erhöhen, wenn ihre Anode statt aus Graphit aus Silizium bestünde. Ein Team vom Institut für weiche Materie und funktionale Materialien des Helmholtz-Zentrum Berlin (HZB) hat erstmals detailliert beobachtet, wie Lithium-Ionen in Silizium einwandern. Ihre Arbeit zeigt, dass schon extrem dünne Silizium-Schichten ausreichen, um die theoretisch mögliche Kapazität des Akkus zu realisieren. Die Arbeit ist veröffentlicht in der Zeitschrift ACSnano der American Chemical Socity (DOI: 10.1021/acsnano.6b02032).


Mit Neutronenmessungen am Institut Laue-Langevin, Grenoble, Frankreich, konnten die Forscher zeigen, dass beim Aufladen die Lithium-Ionen nicht tief in das Silizium eindringen, sondern sich vor allem in der unmittelbaren Grenzschicht einlagern: So entsteht eine nur 20 Nanometer dünne Schicht, die extrem viel Lithium enthält. Damit würden schon extrem dünne Silizium-Schichten ausreichen, um eine maximale Beladung mit Lithium zu ermöglichen.

Lithium-Ionen-Akkus versorgen mobile Rechner, Smartphones und Tablets zuverlässig mit Energie. Elektroautos dagegen kommen mit den gängigen Lithium-Ionen-Akkus noch nicht sehr weit. Das liegt an den zurzeit verwendeten Elektroden aus Graphitschichten. Diese können nur eine begrenzte Anzahl von Lithium-Ionen einlagern, so dass sich die Kapazität der aktuellen Lithium-Ionen-Akkus kaum weiter steigern lässt. Daher sind Halbleitermaterialien wie Silizium als Alternative zum Graphit im Gespräch. Silizium ist in der Lage, enorme Mengen an Lithium aufzunehmen. Allerdings zerstört das Einwandern der Lithium-Ionen die Kristallstruktur des Siliziums. Dabei kann das Volumen auf das Dreifache anschwellen, was zu großen mechanischen Spannungen führt.


Mit Neutronen beim Aufladen beobachtet

Nun hat ein Team aus dem HZB-Institut für weiche Materie und funktionale Materialien unter Leitung von Prof. Dr. Matthias Ballauff erstmals eine Halbzelle aus Lithium und Silizium beim Be- und Entladen direkt beobachtet. "Mit der Methode der Neutronenreflektometrie konnten wir präzise verfolgen, wo sich Lithium-Ionen in der Silizium-Elektrode einlagern und auch, wie schnell sie sich bewegen", sagt Dr. Beatrix-Kamelia Seidlhofer, die die Experimente an der Neutronenquelle im Institut Laue-Langevin durchgeführt hat.


Lithiumreiche Zone nur 20 Nanometer dick

Dabei fanden sie zwei unterschiedliche Zonen. Nahe der Grenzfläche zum Elektrolyten bildet sich eine etwa 20 Nanometer dünne Schicht mit extrem hohem Lithium-Gehalt: Auf zehn Silizium-kommen 25 Lithium-Atome. Daran schließt sich eine zweite lithiumärmere Schicht an. Hier kommt auf zehn Silizium-Atome nur noch ein Lithium-Atom. Beide Schichten zusammen sind nach dem zweiten Ladezyklus weniger als 100 Nanometer dick.


Sechsfache Kapazität theoretisch erreichbar

Nach dem Entladen bleibt in der Silizium-Grenzschicht zum Elektrolyten etwa ein Lithium-Ion pro Silizium-Platz in der Elektrode zurück. Damit errechnet Beatrix-Kamelia Seidlhofer, dass die theoretisch maximale Kapazität solcher Silizium-Lithium-Batterien bei etwa 2300 Milliamperestunden/Gramm liegt. Das ist mehr als das Sechsfache der theoretisch maximal erreichbaren Kapazität bei einem Lithium-Ionen-Akku, der mit Graphit arbeitet (372 mAh/g).


Weniger ist mehr

Aus dieser Arbeit ergeben sich sehr konkrete Hinweise für das Design von guten Silizium-Elektroden: Sehr dünne Siliziumfilme müssten demnach völlig ausreichen, um maximal viel Lithium aufzunehmen, was wiederum Material und vor allem Energie bei der Herstellung spart.

Zur Publikation: Lithiation of Crystalline Silicon As Analyzed by Operando Neutron Reflectivity, ACS Nano. Beatrix-Kamelia Seidlhofer, Bujar Jerliu, Marcus Trapp, Erwin Hüger, Sebastian Risse, Robert Cubitt, Harald Schmidt, Roland Steitz, and Matthias Ballauff.


Weitere Informationen unter:
http://www.helmholtz-berlin.de/pubbin/news_seite?nid=14506&sprache=de&typoid=5272
http://pubs.acs.org/doi/abs/10.1021/acsnano.6b02032

Kontaktdaten zum Absender der Pressemitteilung unter:
http://idw-online.de/de/institution111

*

Quelle:
Informationsdienst Wissenschaft e. V. - idw - Pressemitteilung
Helmholtz-Zentrum Berlin für Materialien und Energie GmbH,
Dr. Ina Helms, 08.08.2016
WWW: http://idw-online.de
E-Mail: service@idw-online.de


veröffentlicht im Schattenblick zum 10. August 2016

Zur Tagesausgabe / Zum Seitenanfang