Schattenblick → INFOPOOL → NATURWISSENSCHAFTEN → TECHNIK


ENERGIE/1537: 26,1% Rekordwirkungsgrad für p-Typ kristalline Si-Solarzellen (idw)


Institut für Solarenergieforschung GmbH - 06.02.2018

26,1% Rekordwirkungsgrad für p-Typ kristalline Si-Solarzellen


Das Institut für Solarenergieforschung Hameln (ISFH) und die Leibniz Universität Hannover haben eine kristalline Silizium-Solarzelle mit einem unabhängig bestätigten Wirkungsgrad von (26,10 ± 0,31) % unter einer Sonne entwickelt. Dies ist ein Weltrekord für p-Typ-Si-Material, welches derzeit ∼ 90% des Photovoltaik-Weltmarkts abdeckt. Die Rekordzelle verwendet einen passivierenden elektronenselektiven n+-Typ Polysilizium auf Oxid (POLO)-Übergang und einen löcherselektiven p+-Typ POLO-Übergang. Es ist die hohe Selektivität dieser Übergänge, die solche Wirkungsgrade ermöglicht. Als wichtiger Schritt in Richtung Industrialisierung wurde Laserablation zur Kontaktöffnung eingesetzt.

Das Institut für Solarenergieforschung Hameln (ISFH) und die Leibniz Universität Hannover haben die Herstellung einer kristallinen Silizium-Solarzelle auf p-Typ Wafermaterial mit einem unabhängig bestätigten Wirkungsgrad von (26,10 ± 0,31) % unter einer Sonne demonstriert. Dies ist ein Weltrekord für p-Typ-Si-Material sowie ein europäischer Rekord für kristallines Si.

Die weiteren Kenndaten der Strom-Spannungs-Kurve der Rekordsolarzelle sind: Leerlaufspannung (726,6 ± 1,8) mV, Kurzschlussstromdichte (42,62 ± 0,4) mA/cm2, Füllfaktor (84,28 ± 0,59) %, ausgewiesene Zellfläche 4 cm2. Die Messung wurde im ISO 17025-akkreditierten Kalibrier- und Testzentrum ISFH-CalTeC durchgeführt.

Gegenwärtig werden rund 90 % des Photovoltaik-Weltmarkts mit p-Typ-Silizium-Material bedient. Wirkungsgrade über 25 % wurden bisher jedoch nur auf n-Typ-Silizium und in Kombination mit Bordiffusionen oder Hetero-Junctions aus amorphem Silizium erreicht.

"Unser Ergebnis zeigt, dass weder n-Typ-Silizium noch Bordiffusionen oder amorphes Silizium ein Muss für ultrahohe Wirkungsgrade sind. Es gibt auch andere attraktive Wege zu höchsten Wirkungsgraden mit Silizium zu potenziell niedrigen Kosten!", so Prof. Rolf Brendel, Geschäftsführer des ISFH.

Die Rekordzelle verwendet einen passivierenden elektronenselektiven n+-Typ Polysilizium auf Oxid (POLO)-Übergang am Minuskontakt der Zelle und einen löcherselektiven p+-Typ POLO-Übergang am Pluskontakt. Es ist die hohe Selektivität dieser Übergänge, die solche hohen Wirkungsgrade ermöglicht. Die zwei verschiedenen Übergänge werden in einem ineinandergreifenden Muster auf der Rückseite aufgebracht. Dadurch wird die parasitäre Absorption im Poly-Si minimiert und eine Abschattung durch vorderseitige Metallisierung vermieden. n+-Typ und p+-Typ Poly-Si sind durch eine intrinsische Poly-Si-Region voneinander getrennt. Die Strukturierung der dotierten Regionen erfolgt mit Laborverfahren. Die Öffnung des dielektrischen Rückseitenreflektors erfolgt jedoch bereits durch eine industriell realisierbare lokale Laserablation. Das Ziel ist die Integration der POLO-Übergänge in die aktuelle Mainstream-Technologie mit einem deutlichen Effizienzvorteil. "Dass wir die Photolithographie durch die Laser-Kontaktöffnung ersetzt haben, ist ein erster wichtiger Schritt in Richtung Industrialisierung, da sie eine Metallisierung auf Siebdruckbasis ermöglicht", so der Arbeitsgruppenleiter Prof. Robby Peibst.

Das ISFH dankt dem Projektpartner Centrotherm, der die Poly-Si-Schicht in einem LPCVD-Reaktor abgeschieden hat. Der Partner Wacker trug mit seinem Wissen zur Hochtemperaturbehandlung von Si-Wafern bei.

Die Forschung am ISFH wurde vom Bundesministerium für Wirtschaft und Energie (BMWi) sowie vom Land Niedersachsen finanziell unterstützt.



Kontaktdaten zum Absender der Pressemitteilung unter:
http://idw-online.de/de/institution1673

*

Quelle:
Informationsdienst Wissenschaft e. V. - idw - Pressemitteilung
Institut für Solarenergieforschung GmbH, Dr. Roland Goslich, 06.02.2018
WWW: http://idw-online.de
E-Mail: service@idw-online.de


veröffentlicht im Schattenblick zum 9. Februar 2018

Zur Tagesausgabe / Zum Seitenanfang